An overview of recent taxonomic studies on Euphorbiaceae s.l. in Brazil
Panorama dos recentes estudos taxonômicos em Euphorbiaceae s.l. no Brasil

Ricardo de S. Secco1, Inês Cordeiro2, Luci de Senna–Vale3, Margareth F. de Sales4, Leticia Ribes de Lima5, Débora Medeiros6, Bárbara de Sá Haiad7, Arline Souza de Oliveira7, Maria Beatriz Rossi Caruzo5, Daniela Carneiro–Torres6 & Narcísio C. Bigio7

Abstract
The Euphorbiaceae sensu lato are distributed mainly in the tropics, in various types of vegetation and habitats, being one of the largest, most complex and diverse families of angiosperms. It has recently been divided into four families, according to classification systems based on molecular phylogeny: Euphorbiaceae sensu stricto, Phyllanthaceae, Putranjivaceae, and Picrodendraceae. There is a proposition to establish Peraceae still under discussion. There were also changes in the taxonomic position of genera widely distributed in the Brazilian territory, such as Amanoa, Drypetes, Pera, Phyllanthus, Podocalyx, Pogonophora, and Richeria, among others. In addition, new species have been proposed and the limits of taxa distribution are expanding in Brazil. Thus, the authors provide an overview of recent studies and advances in the taxonomy of Euphorbiaceae s.l. in the Northern, Northeastern, Southeastern and Southern regions of Brazil, concentrating on review works and regional floras, as well as the changes that resulted in setting a new taxonomic family.

Key words: Croton, Phyllanthus, taxonomy of Phanerogams, plant distribution.

Resumo
As Euphorbiaceae sensu lato distribuem-se especialmente nos trópicos, nos mais variados tipos de vegetação e habitats, sendo uma das maiores, mais complexas e diversificadas famílias das Angiospermas. Foi recentemente dividida em quatro famílias e segundo os atuais sistemas de classificação, baseados em estudos filogenéticos envolvendo dados moleculares, está assim classificada: Euphorbiaceae sensu stricto, Phyllanthaceae, Putranjivaceae e Picrodendraceae, havendo uma proposição de estabelecer Peraceae, táxon ainda em discussão. Houve também mudanças no posicionamento taxonômico de gêneros de ampla distribuição no território brasileiro, tais como Amanoa, Drypetes, Pera, Phyllanthus, Podocalyx, Pogonophora e Richeria, entre outros. Além disso, novas espécies vêm sendo propostas e a amplitude dos limites de distribuição de diversos táxons vem aumentando no Brasil. Diante do exposto, os autores fornecem um panorama geral dos estudos mais recentes e avanços na taxonomia de Euphorbiaceae s.l. nas regiões Norte, Nordeste, Sudeste e Sul do país, concentrando-se nos trabalhos de revisão e floras regionais, bem como nas mudanças que resultaram em nova configuração taxonômica da família.

Palavras-chave: Croton, Phyllanthus, taxonomia de fanerógamos, distribuição de plantas.

Introduction
The Euphorbiaceae is composed of 334 genera (Webster 1994) and over 8,000 species (Radcliffe-Smith 2001), which are distributed mainly in the tropics in the several types of vegetation and habitats. It is one of the most complex, large and diverse families of Angiosperms. Wurdack et al. (2004) consider Euphorbiaceae sensu lato as a pantropical family, composed of 340 genera and approximately 8,000–9,000 species.

This family is considered as one of the most important Angiosperm groups, especially for comprising genera such as Hevea Aublet and Manihot Miller. According to Schultes (1987), the rubber-tree (Hevea brasiliensis (Willd. ex A. Juss.) Muell.Arg.) has drastically changed human life within a single century, because it is a natural source of rubber, whereas the manioc, also known in Brazil as “aipim”, “macaxeira” or “cassava”, (Manihot esculenta Crantz) is among the 13 most important human foods.

1 Museu Paraense Emílio Goeldi, Av. Magalhães Barata 376, 66040-170, Belém, PA, Brazil.
2 Instituto de Botânica, C.P. 3005, São Paulo, SP, Brazil.
3 Museu Nacional, UFRJ, Quinta da Boa Vista, São Cristóvão, 20940-040, Rio de Janeiro, RJ, Brazil.
4 Universidade Federal Rural de Pernambuco, 52171-900, Recife, PE, Brazil.
5 Universidade Federal de São Carlos, Araras, SP, Brazil.
6 Universidade Estadual de Feira de Santana, 44031-460, Feira de Santana, BA, Brazil.
7 Universidade Federal de Rondônia, Depto. Biologia, Campus BR 364, km 9,5 Sentido Acre, 78900-000, Porto Velho, RO, Brazil.
Many authors studied the taxonomy of this family, standing out Jussieu (1824), Baillon (1858), Bentham (1878, 1880) Mueller (1873), Hutchinson (1969), Jablonski (1967), and Pax & Hoffmann (1914, 1931). Recently, a significant contribution was made by Webster (1975, 1987, 1994), which was mainly related to the family’s classification and to a revision of members of the Euphorbiaceae in the New World (Webster 1993; Webster & Armbruster 1991).

Recently, the family has been through several taxonomic changes, mainly based on phylogenetic studies with molecular data (APG II 2003; Wurdack et al. 2004, 2005; APG III 2009), with marked differences in relation to the traditional classification revised and proposed by Webster (1994), in which Euphorbiaceae was divided into five subfamilies.

However, although the Euphorbiaceae s.l. have been studied by a group that comprises botanists from several countries, including Brazil, and carries out research in taxonomy, anatomy, phytochemistry, economic botany, and molecular systematic, which already resulted in the division of the family into four (APG II 2003), the knowledge of this family still has considerable gaps, even regarding morphology. Webster (1987) emphasizes that to propose a safer classification for this family, at least detailed morphological and anatomical studies involving many of its genera are required.

This situation is also observed in Brazil, where many genera of Euphorbiaceae s.l. exhibit high number of species, such as Phyllanthus L., Mabea Aublet, Dalechampia Plummer ex L., and Croton L. These genera still have confusing and outdated taxonomy in some regions of the country, though some advancements have been made in the past years, mainly with the publication of the Species List of the Brazilian Flora (Cordeiro et al. 2010; Secco et al. 2010).

Therefore, the present study aims at presenting an overview of the most recent studies on Euphorbiaceae s.l. in four Brazilian regions as well as changes in the classification of the group, and at pointing out research opportunities that could lead to a more complete knowledge, in particular of the less studied genera.

Euphorbiaceae Systematics in the Light of Modern Classification Systems

In Engler’s system (1964) the Euphorbiaceae were classified in the class Dicotyledonae, subclass Archychlamydeae, order Geraniales and suborder Euphorbiineae.

Cronquist (1981) classified them in the class Magnoliopsida, subclass Rosideae, order Euphorbiales.

Webster (1975) proposed an infrafamilial classification for the Euphorbiaceae, subdividing it into five subfamilies, which were separated into two groups, according to the number of ovules per ovary locale: Phyllanthoideae and Oldfieldioideae, both with two ovules and Acalyphoideae, Crotonoideae and Euphorbioideae, with one ovule.

In a revised and extended classification, Webster (1994) proposed that Euphorbiaceae s.l. encompasses five subfamilies: Phyllanthoideae, Oldfieldioideae, Crotonoideae, Acalyphoideae, and Euphorbioideae. He also proposed new tribes and subtribes in the same study.

However, according to the classification system proposed by the Angiosperm Phylogeny Group (APG II 2003), there are no molecular evidences that allow maintaining Euphorbiaceae s.l. as a single group. The family was then divided into four: Euphorbiaceae sensu stricto, comprising the subfamilies with uniovulate ovary locules (Euphorbioideae, Crotonoideae, and Acalyphoideae); Phyllanthaceae, including the Phyllanthoideae (biovulate ovary locules), Picrodendraceae, including the Oldfieldioideae (biovulate ovary locules) and Putranjivaceae (biovulate ovary locules, comprising Drypetes Vahl and Putranjiva Wall.).

Wurdack et al. (2005), using molecular data of the plastidial regions rbc-L and trnL-F, assessed the circumscription of Euphorbiaceae s.s. (Acalyphoideae, Crotonoideae and Euphorbioideae), as well as the monophyletism of the suprageneric taxa recognized in recent classifications. Hence, they proposed two new subfamilies in Euphorbiaceae s.s.: Peroideae and Cheliosioidae. These studies corroborated the findings of the Angiosperm Phylogeny Group (APG II 2003), i.e., only the subfamilies with uniovulate ovary locules (Euphorbioideae, Acalyphoideae and Crotonoideae) are considered as Euphorbiaceae s.s.; they re-established Peroideae Baill. ex Hassk. as a subfamily and admitted that the classification of Euphorbiaceae s.s. needs revision.

Euphorbiaceae s.s. and the other families segregated from Euphorbiaceae s.l. are included in Malpighiales, according to the Angiosperm Phylogeny Group (APG II 2003; APG III 2009), Wurdack et al. (2005) and Wurdack & Davis (2009). Hence, it was necessary to move some genera to independent families, as for example, Amanoa Aublet (to Phyllanthaceae), Podocalyx Klotzsch (to Picrodendraceae), and Drypetes (to Putranjivaceae). Those changes have been debated and have not always received the approval of specialists in
Euphorbiaceae, as in the case of Pera Mutis, in Peraceae, which still needs further studies according to APG III (2009).

This division of Euphorbiaceae s.l. into four families was maintained by the Angiosperm Phylogeny Group (APG III 2009), which stated also that the recognition of Peraceae Klotzsch would be necessary to maintain Euphorbiaceae as a monophyletic group, since Rafflesiaeaceae would be placed between the subfamilies Peroideae and Acalyphoideae. Yet it would depend on future studies, what would hinder the tentative establishment of the family (Peraceae).

Judd et al. (2009) recognized four families: Euphorbiaceae s.s., Phyllanthaceae, Picrodendraceae, and Putranjivaceae, all in the clade Malpighiales; Phyllanthaceae exhibits two ovules per locule and seeds without aril. Picrodendraceae also has two ovules per locule, but it does not have divided styles and nectariferous disk.

Wurdack & Davis (2009) proposed the elevation of Peroideae to the family status (Peraceae). Although approved by the APWeb, this proposal is still under debate (Stevens 2001). Reveal & Chase (2011) did not consider Peraceae as a family, considering it as a synonym of Euphorbiaceae.

Geographic Distribution of Euphorbiaceae

Euphorbiaceae s.s. has pantropical distribution, with higher occurrence in tropical regions. According to Judd et al. (2009), this family is composed of 222 genera and 6,100 species. These authors state that Phyllanthaceae has predominantly tropical distribution, with 55 genera and 1,745 species. According to Souza & Lorenzi (2008), Picrodendraceae is a pantropical taxon and has approximately 30 genera and 100 species, and Putranjivaceae is predominantly paleotropical, with only three genera and approximately 200 species.

Wurdack & Davis (2009) stated that Euphorbiaceae s.s. is the largest Malpighiales family, with more than 246 genera and approximately 6,300 species.

Euphorbiaceae Studies in Brazil

Croton L. is the most studied genus of Euphorbiaceae s.l. in Brazil and abroad, not only from the perspective of classic taxonomy, but also of phylogenetic systematics made mainly with molecular data. Complex genera such as Phyllanthus, Dalechampia, Manihot, and Mabea still need updated taxonomic revision, aiming at a better knowledge of their species boundaries.

Next, we provide a general overview of what has been studied on the matter by different research groups in Euphorbiaceae s.l. in the northern, northeastern, southeastern, and southern regions of Brazil.

I. Euphorbiaceae in the Northern Region

In the Brazilian Amazon, pioneer studies were led by Jacques Huber, Adolpho Ducke, and Walter Egler, with contributions by Murça Pires and William Rodrigues. From the 1980s on, there has been great increase in Euphorbiaceae research in the region, mainly involving the subfamily Crotonoideae (sensu Webster), starting with studies by Secco (1985), discussing varieties of Sagotia racemosa Baill. Secco (1987) assessed systematic and evolutionary aspects of Sandwithia Lanj., and compared them with those of Sagotia Baill. and Anomalocalyx Ducke. Secco (1988) described the second species of Sandwithia, S. heterocalyx Secco, an uncommon taxon that exhibits a pistillate flower with free calyx, contrary to the genus’ pattern.

In the 1990s stands out the study by Secco (1990a), who revised Anomalocalyx, Dodecastigma Ducke, Pausandra Radlk., Pogonophora Miers ex Bentham, and Sagotia, providing a consistent update of Pausandra, a genus with very confusing taxonomy until then, in particular because of its sparse distribution in the Amazon and its little conspicuous, usually deciduous flowers. The revision of Richeria Vahl (Secco & Webster 1990) invalidated the varieties proposed previously for R. grandis Vahl, as well as updated the synonymy. Patterns of geographic distribution of some Crotonoideae in the Amazon were presented by Secco (1990b; 1993a), who assessed mainly Pausandra species and started a study on Croton species that occur in the Brazilian Amazon. In his study, he described some liana species, comparing them with C. pullei Lanj., whose palynological aspects continued to be discussed by Carreira et al. (1996). A taxonomic treatment for Nealchornea Huber was made by Secco (1997).

Starting the studies on Alchorneae (Hurusawa) Hutchinson, Secco (1993b) proposed the species Alchornea fluitatiulis Secco, collected in the Carajás Mountain Range (state of Pará) and in the Pindaré River (state of Maranhão); the species is uncommon in the genus because it is monoecious. Later,
analyzing collections from Bolivia, he described *Alchornea anamariae* Secco and proposed a new combination for *Alchornea* Swartz, based on *Conceveiba pubescens* Britton, later renamed as *Alchornea brittonii* Secco. This research resulted in a revision of the Neotropical Alchornea, published in Flora Neotropica (Secco 2004a), updating *Aparisthmium* Endlicher, *Alchornea*, and *Conceveiba* Aublet, resulting in a total of 37 species. Next, Secco & Giuliani (2007) discussed aspects of the biology of *Conceveiba guianensis* Aublet collected in the Mocambo Reserve (Belém, Pará), in which only individuals with pistillate flower, fruits, and seedlings were found.

An update of the taxonomy and phytogeography of *Hevea* was proposed by Pires et al. (2002). Taxonomic treatments were also made for *Alchorneopsis* Muell. Arg., *Cleidion* Blume and *Polyandra* Leal (Secco 2001), *Adenophaedra* (Muell. Arg.) Muell. Arg., and *Tetrochidium* Poeppig (Secco 2003), as well as for 15 Euphorbiaceae genera of the Ducke Reserve (Secco 2005). In addition, other studies on Euphorbiaceae present in Neotropical floras are *Flora of Venezuelan Guiana* (Secco in Webster et al. 1999), *Flora of the Ducke Reserve* (Secco & Cordeiro 1999), *Checklist of Flora of Acre* (Secco et al. 2008b), *Checklist of the Plants of the Guiana Shield*, *Checklist of Flora of Bolivia* (Secco et al. in press), *Euphorbiaceae of the Flora of Caxiuanã Reserve* (Trindade & Secco 2009), and *Rare Plants of Brazil* (Secco & Rosário 2009). A taxonomic update of the rubber-tree *Hevea brasiliensis* was made by Secco (2008a), by requested of EPAMIG (Agricultural Research Company of Minas Gerais).

Secco (2008b) concluded the revision of *Croton* species that occur in the Brazilian Amazon, including most of those addressed by Mueller (1873) and bringing about taxonomic novelties such as *Croton faroensis* R. Secco, *C. dissectistipulatus* R. Secco (Secco 2004b), an uncommon species because it has only three stamens, *C. subsusperrimus* R. Secco, P. Berry & C. Rosário, *C. diasii* Pires ex Secco & P.E.Berry, and *C. trombetensis* Secco, P.E.Berry & N. Rosa. He also recorded new occurrences in the region, such as *Croton gossipifolius* Vahl, *Croton nervosus* KI., *Croton sampatik* Muell.Arg., *C. guianensis* Aublet, *C. spiraeifolius* Jabl., *C. urucurana* Baill., *C. draconoides* Muell.Arg., *C. mollis* Benth., *C. tessmannii* Mansf., and *C. schiedianus* Schl. Guimarães & Secco (2009) updated the studies of *Croton* section *Cyclostigma* and *Croton* section *Luntia* subsection *Matourense* (Euphorbiaceae s.s.) that occur in the Brazilian Amazon by including *Croton urucurana* Baill., *C. draconoides* Muell.Arg., *C. trombetensis* Secco; Berry & Rosa, *C. sampatik* Muell.Arg., *C. palanostigma* Kl., *C. pullei* Lanj., and *C. matourensis* Aublet.

Currently, Euphorbiaceae research in the Amazon is focused on *Pera* (see Bigio & Secco 2012, in this volume), a genus which had never before been subjected to revision, and which still has a confusing and outdated taxonomy, in addition to *Micrandra* Bentham, *Dalechampia* and *Amanoa*.

Pera is a Neotropical taxon of the subfamily Acalyphoideae, with ca. 30 species distributed from Cuba and Central America to southern Brazil, and highest diversity in the Amazon (Webster 1994). It is the only member of the tribe Perea (Klotz. & Gcke.) Pax & K. Hoffmann, a position supported unanimously by many who have made treatment to the genus (Baillon 1858; Pax & Hoffmann 1919; Jablonski 1967; Webster 1994). It exhibits a unique morphological character among the Euphorbiaceae: the unisexual pseudanthia (cymose inflorescence), with reduced flowers involved by a showy involucral bract (yellow, cream, white or sometimes red), which is fragrant and more or less globose. The most recent studies were published by Gillespie & Ambruster (1997), comprising only 5 species from the Guianas, and by Webster et al. (1999), comprising 6 species included in the Flora of Venezuelan Guiana. In Brazil stands out the study by Leal (1951), who proposed some new species. Bigio (2009) made a taxonomic treatment of 13 species from the Brazilian Amazon. Recently, two new species were proposed: *P. manausensis* Bigio & Secco (Bigio & Secco 2010) and *P. eiteniorum* Bigio & Secco (Bigio & Secco 2011).

Molecular systematics led to great advancement in studies on Euphorbiaceae. However, morphological characteristics hinder the insertion of some genera in this family, as it is the case of *Pera*, which exhibits inflorescences inside an involucral bract, and its flowers and floral parts in the pseudanthia. By having this inflorescence type, *Pera* is similar to *Dalechampia*, though the latter belongs to Euphorbiaceae s.s.

Micrandra is an example of an Amazonian genus that needs revision. According to Webster (1994), it is composed of seven species, and belongs to Euphorbiaceae, subfamily Crotonoideae, tribe Micrandreae, subtribe Micrandrineae, together with *Cunuria* Baillon and *Micrandropsis* Rodrigues. According to APG system (APG III 2009), *Micrandra* would be subordinated to Euphorbiaceae s.s. The most recent study on this
genus remains Schultes (1952). Therefore, the genus needs revision, though Berry in Webster et al. (1999) provided a synopsis of its species in the Flora of the Venezuelan Guiana.

Schultes (1979) published additional notes on Micrandra, focusing the economic potential of the genus, especially as a source of latex for rubber production. It is important to revision this genus, especially because of the close relationship that it has with Cunuria, which, according to Baldwin & Schultes (1947), has 4 species and a variety distributed in the Amazon. However, Schultes (1952) considered them as synonyms of Micrandra, proposing thus new combinations. Webster (1994) drew attention to this fact, but kept Cunuria as a valid genus. The relationships between Micrandra, Cunuria, and Micrandropsis, the latter recently collected also in the state of Pará (it had been previously found only in the state of Amazonas), need to be better established.

According to Webster (1994), Dalechampia is a genus of Euphorbiaceae, subfamily Acalyphoideae, tribe Plukenetieae (Bentham) Hutchinson, positioned isolatedly in the subtribe Dalechampineae, and it is composed of 100 species, out of which 90 are distributed in tropical America. In the APG system (APG II 2009), this genus is included in Euphorbiaceae s.s. It has an uncommon morphological characteristic to Euphorbiaceae, which is the specialized inflorescence of the type bilabiate, bisexual pseudanthia, with two involucral bracts, usually colorful, with separate staminate and pistillate flowers. This type of pseudanthia is different from that found in Pera. Webster & Armbruster (1991) recognized six sections for the 90 Neotropical species of the genus: Dalechampia section Rhopalostylis Pax & Hoffmann, D. section Dioscoreifoliae Pax & Hoffmann, D. section Cremophyllum (Scheidweiler) Baillon, D. section Coriaceae Pax & Hoffmann, D. section Tiliifolae Webster & Armbruster, and D. section Dalechampia. According to the survey carried out in the herbaria MG and IAN, and based on Webster & Armbruster (1991), 17 species occur in the Brazilian Amazon; only Dalechampia section Coriaceae has probably no representatives in the region. Gillespie & Armbruster (1997) revised 18 species of Dalechampia for the Flora of the Guianas, providing only 4 illustrations, whereas Armbruster in Webster et al. (1999) revised briefly the 12 species of the Flora of the Venezuelan Guiana. In Brazil, the study by Rodrigues (2007) is the most up-to-date, and included four species of Distrito Federal.

The taxonomic treatment of Dalechampia by Webster & Armbruster (1991) is still the most up-to-date. These authors provided a detailed study on the morphology, described briefly the genus, sections and subsections, and two new species that they proposed. However they did not provide full descriptions and illustrations for other species of the genus and did not cite most collections examined, providing only the citation of the types. Therefore, Secco & Bigio (unpublished data) are revising and updating the species of Brazil, providing detailed keys, descriptions, and illustrations, since they were not yet subjected to complete taxonomic treatment.

Webster (1994) states that Amanoa belongs to Euphorbiaceae, subfamily Phyllanthoideae, tribe Amanoaceae (Pax & Hoffmann) Webster, together with Pentabrachion Müll.Arg., a monotypic genus of western Africa. However, according to the APG system (APG III 2009), the taxon would be part of the family Phyllanthaceae.

Most of the 16 Amanoa species occur in the Neotropics (13); only three are endemic to Africa. The genus was never subjected to a complete revision; the most recent study is still the one carried out by Hayden (1990), which provided an identification key for the Neotropical species, described four new species, proposed a new name (A. sinuosa Hayden), and commented on A. guianensis Aublet, a type species and its varieties. The taxonomic treatment by Hayden (1990) needs update, especially because many samples available in the herbaria of the IAN, INPA, and MG were not analyzed and new collections were accomplished lately, making it necessary to make a new approach to the genus. Webster et al. (1999) updated only the species present in the Flora of the Venezuelan Guiana. Secco (2005) has made a treatment for two species for the Flora of the Ducke Reserve, Manaus, state of Amazonas, and Secco et al. (2010) provided an updated checklist of the species present in Brazil.

In the herbaria of MG and IAN, the most representative of eastern Amazon, there are many collections lacking updated identification of Amanoa; some contain only fruits or other not seen with entire reproductive parts, so new collections are needed. Besides, the complete material (with flowers and fruits) needs to be analyzed by a specialist, since many samples were identified by comparison, and not always by specialists. This hinders the recognition of some species with more restricted distribution in the Amazon, such as Amanoa glaukoprylla Muell. Arg., A. gracilima W.J. Hayden, and Amanoa neglecta W.J. Hayden.
Gymnanthes Swartz does also need further studies. This genus has approximately 40 species, according to Webster (1994), and belongs to the subfamily Euphorbioideae, tribe Hippomaneeae, subtribe Hippomanianae. According to the APG II system, the genus belongs to Euphorbiaceae s.s. and includes also Actinostemon Mart. ex Kl. Although the greatest specialists in Euphorbiaceae, such as Pax & K. Hoffman (1912), Baillon (1858) and Mueller (1866), have kept Gymnanthes and Actinostemon as separate genera, Webster & Huft (1988) and Webster (1994) synonymized Actinostemon with Gymnanthes, since the characters to separate it from Gymnanthes are not convincing from the taxonomic perspective. Despite that, Webster et al. (1999) considered Actinostemon as an independent genus, separated from Gymnanthes. Esser (1999), in a partial taxonomic treatment of the Hippomaneae of Malaysia, mentioned the inclusion of Actinostemon in Gymnanthes proposed by Webster (1994), but did not keep it as a synonym of Gymnanthes. Previously, authors such as Jablonski (1967, 1969) and Gillespie (1993) kept Actinostemon and Gymnanthes separated, though Jablonski (1967) stated that the distinction of the two genera based on the number of the stamens is very ambiguous. The taxonomic treatment proposed by Jablonski (1969) is still insufficient, as the author did not describe or illustrate all species, detailing more the two new species described (Actinostemon unciiformis Jabl., of Bahia, and A. appendiculatus Jabl., of northeastern, including Pernambuco, and southeastern Brazil, including Espirito Santo and probably Rio de Janeiro). Webster (pers. comm.) stated that he was inclined to reconsider Actinostemon as an autonomous genus, though he had included it in Gymnanthes (Webster 1994). He admits that Actinostemon is very close to Gymnanthes, and most representatives of Hippomaneae (ex. Sebastiania Sprengel, Actinostemon) have not been well delimited morphologically.

Studies by Melo (2006), revising Sebastiania, included some species of this genus in Gymnanthes/Actinostemon. According to this author, only the species of Sebastiania section Sebastiania should be included in Sebastiania.

The problems exposed above led to a study on species of Gymnanthes (and Actinostemon), emphasizing those found in the Amazon, as a contribution to the taxonomic delimitation of the aforementioned taxa, since both Webster (1994) and Esser (1999) admit that the generic delimitation of the Neotropical representatives of Hippomaneae is still under dispute.

II. Euphorbiaceae in the Northeastern Region

Studies on Euphorbiaceae s.l. in northeastern Brazil focused mainly the floras of the states of Bahia and Pernambuco. The diversity of this family is still poorly known, though some relevant studies have been carried out, aiming at solving mainly problems in the tribes Euphorbieae, Hippomaneae, Hureae, and Crotonaeae, particularly in the genus Croton. In this aspect, a pioneer study by Bezerra & Fernandes (1982) stands out, which comprises six Croton species, locally known as ‘marmeleiros’, emphasizing the presence of Croton sonderianus Muell. Arg. as the most abundant in the region.

Studies comprising the entire family were carried out by Cordeiro (1995) for the Flora of Pico das Almas, Chapada Diamantina, and Carneiro et al. (2002) for the Euphorbiaceae of “Inselbergs of Milagres” (state of Bahia). For the whole northeastern region, Cardeiro & Carneiro-Torres (2006) listed 211 species and 45 genera in the plant checklist of northeastern Brazil. A comprehensive study on the family Euphorbiaceae for reserves in the Caatinga of Pernambuco was carried out by Lucena (2009), who studied 54 species. A synopsis of this family, comprising 25 species and 11 genera of Serra de Itabaiana National Park (state of Sergipe), was published by Lucena et al. (2009). Lucena & Alves (2010) added 29 Euphorbiaceae taxa, with comments, to the list of this family in the northeastern region.

Taxonomic treatments for genera and tribes were also carried out for Chapada Diamantina, located within Bahia and Pernambuco. Carneiro-Torres et al. (2003b) studied the genus Phyllanthus (currently Phyllanthaceae) reporting 11 species, and Carneiro-Torres et al. (2002) studied the tribe Euphorbieae and recognized 16 species. Still regarding Phyllanthus, Silva & Sales (2007), based on Silva (2004), found 17 species in the state of Pernambuco and 11 species in the Caatinga biome (Silva & Sales 2004). A synopsis of Phyllanthus with 36 species for northeastern Brazil was also published by Silva & Sales (2008). Silva (2009) described two new species of Phyllanthus. The study of Cnidoscolus Pohl for the state of Pernambuco was carried out by Melo & Sales (2008). Santos & Sales (2009) studied also the tribe Hippomaneae in the state of Pernambuco.

Revision and morphological phylogeny studies were carried out and other are in developmental phase focusing mainly the genera of the tribe Hipomaneae. The revision of Sebastiania, currently circumscribed to 19 species, was developed by Melo (2006). Studies
on morphological phylogeny of *Sebastiana*, including 17 species and 13 species of other Hippomaneae genera and the use of carpological characters in the delimitation of genera of the tribe Hippomaneae were developed by Souza (2011) and submitted for publication. Revisions and morphological and molecular phylogeny studies of *Gymnanthes* and *Stillingia* Garden ex L. are being carried out. For the tribe Hureae studies on morphological phylogeny and a synopsis of the species of this tribe have been carried out by Oliveira (2010), who analyzed 17 species of the genera *Algeronia* Baill. (11 species), *Hura* L. (1 species), and *Ophthalmoblapton* Allemão (4 species); *Tetraplandra* was considered as a subgenus of *Algeronia*.

The best studied Euphorbiaceae genus in northeastern Brazil is doubtless *Croton*, in particular in the semi-arid region. Local and regional floras and revisions of sections have been published. The revision of *Croton* section *Arroyoglossum* in Brazil was carried out by Gomes (2006) and Gomes et al. (2010). A morphological phylogeny study on *Croton* section *Ocalia* is being concluded. Silva et al. (2009) studied 15 species of *Croton* of the micro-region of Vale do Ipanema, in the Caatinga biome, state of Pernambuco. In this state, Silva et al. (2010) published a synopsis of *Croton*, reporting 35 species of the genus. Attention should be given to *Croton* in the Caatinga biome, including the phytogeography of this genus, of which 68 species were recognized by Carneiro-Torres (2009). Lucena (2000) analyzed 14 species that occur in Zona do Litoral and Zona da Mata of Pernambuco. Still regarding *Croton*, a study on trichomes of species that occur in Pernambuco was carried out by Lucena & Sales (2006). Other studies are in the phase of data collection, standing out the studies of *Croton* in Chapada do Araripe, state of Ceará, and Vale do Catimbau National Park, Buique, state of Pernambuco, and the flora of the state of Rio Grande do Norte.

Recently, some new species have been described for northeastern Brazil. A new species of *Gymnanthes* was proposed by Esser et al. (2010). Gomes et al. (2010) described a new species of the genus *Croton*, and Carneiro-Torres et al. (2011) described three new species for this genus in the Caatinga.

Although Euphorbiaceae studies have advanced recently, there are still many groups that need to be studied. Among Hippomaneae, the genus *Sapium* P. Browne deserves attention for the difficulty of delimiting its species. The species of *Croton* that occur in forests and restingas still need to be further investigated.

III. Euphorbiaceae in the Southeastern Region

IIIA. Research in São Paulo

In the case of the research group of the state of São Paulo, the most recent studies focused mainly Euphorbiaceae s.s. and Phyllanthaceae, comprising revisions, floras, and descriptions of new species.

The study on the tribe Crotoneae in the state of São Paulo (Caruzo 2005; Caruzo & Cordeiro 2007) reported 37 *Croton* species and two *Astraea* Klotzsch species. Among the *Croton* species, several occur also in other countries, and some are broadly distributed all over the Neotropics, such as *C. glandulosus* L. C. hirtus L’Herit, *C. pedicellatus* Kunth, and *C. triqueter* Lam.; others are moderately distributed in South America: they occur in Bolivia, Paraguay, Argentina, Uruguay, and center-western, southeastern and southern Brazil, such as *C. urucurana* Baill., *C. didrichsenii* Webster, and *C. rottlerifolius* Baill.; in Argentina, Paraguay, and Brazil, such as *C. antisyphiliticus* Mart.; in Bolivia, Paraguay, center-western, southeastern and southern Brazil, such as *C. gracilipes* Baill.; in Paraguay and most part of Brazil, such as *C. floribundus* Spreng.; in Argentina, Uruguay, southeastern and southern Brazil, such as *C. lanatus* Lam.; in Bolivia, center-western, southeastern and southern Brazil, such as *C. grandivelus* Baill.; in Paraguay, center-western, southeastern and southern Brazil, such as *C. serratifolius* Baill.; in Argentina, southeastern and southern Brazil, such as *C. glechomifolius* Muell. Arg.; and in Bolivia, northeastern and southeastern Brazil, such as *C. tricolor* Klotzsch ex Baill. Among the species exclusively Brazilian are: *C. lundianus* (Didr.) Muell. Arg., which occurs all over Brazil; *C. piptocalyx* Muell. Arg., found in northeastern, center-western and southeastern Brazil; *C. macrobothrys* Baill., found in northeastern, southeastern and southern Brazil; *C. fuscescens* Spreng., *C. hemiargyreus*

Besides, a Rapid Color Guide, containing photos of the tree *Croton* species of the Atlantic Forest, was produced and distributed by the Field Museum of Natural History (Caruzo 2005).

The monograph on the genus *Phyllanthus* (Phyllanthaceae), represented by 16 species in the state of São Paulo, has already been concluded (Martins & Lima 2011, in press).

Reviews: Among revisions of the genus is the study by Lima (2006) on *Croton* section *Lamprocroton* (Muell. Arg.) Pax. This section is entirely Neotropical, with an interesting disjoint distribution between South America and Mexico, and is characterized by the shrubby habit of its species, indumentum of lepidote trichomes, absence of cymules on the inflorescence, and bifid style branches (Lima & Pirani 2008). Twenty-six species were recognized in the section, among which three were new: *C. imbricatus* L.R. Lima & Pirani, *C. muellerianus* L.R. Lima & Pirani, and *C. pygmaeus* L.R. Lima & Pirani; the first endemic to the state of Bahia, the second to Paraná and the third endemic to Rio Grande do Sul. In addition to the taxonomic treatment and phylogenetic analysis of the section, morphological studies of leaf trichomes and pollen grains of some of its species have been also carried out.

Caruzo (2010) made another revision on *Croton* section *Cleodora* (Klotzsch) Baill. Caruzo et al. (2011) assessed the phylogenetic relationships of this section, using the nuclear region ITS and the plastidial regions trnL-F and trnH-psbA, separately and combined. In the individual phylogenies and in that with combined data, species of the section *Cleodora sensu* Webster (1993) emerged, almost in their totality, together with other species that had been originally not included in the section, forming a strongly supported clade characterized by two morphological synapomorphies: female flowers with imbricate sepals and style united at the base or above. *Croton* section *Cleodora* is an exclusively Neotropical section that has an interesting disjoint distribution among Central America, Amazon, and Atlantic Forest. Eighteen species were recognized for this section; three of which were new (Caruzo et al. 2008; Caruzo et al. 2010a,b). The section is composed of arboreous or shrubby species, usually late-senescent, covered by trichomes that are adpressed/star-shaped, star-shaped/lepidote, lepidote or more rarely star-shaped and multiradiate; the leaves exhibit a pair of acropetiolar or basilaminar glands; inflorescences are terminal, rarely axillary, basal cymules, usually bisexual; male flowers are campanulate, rarely subcampanulate, valvate or slightly imbricate, with stamens between 15–25; female flowers are campanulate to urceolate, in general conspicuously imbricate, styles 4-fidus or multifidus, united at the base or above, usually forming a crown. In this new circumscription of the section *Cleodora*, two new subsections were recognized: *Sphaerogyni*, characterized by sepals with quincuncial estivation in its pistillate flowers, and *Spruceani*, characterized by sepals with imbricate or reduplicate-valvate estivation.
The revision of Microstachys, associated with a phylogeny of Hippomaneae, is in progress (I. Cordeiro, personal communication).

Brasilicrocotan P.E. Berry & Cordeiro, a new genus, and the reestablishment of Astraea: according to Berry et al. (2005a), the erect stamens on the flower bud of Brasilicrotan mamoinha P.E. Berry & Cordeiro are the main morphological characteristic that differentiates it from Croton. However, the best justification for the establishment of this new genus is its position as sister-group of most Croton species, with the exception of Croton lobatus L. and C. praetervisus Muell.Arg., which belong to Croton section Astraea (Klotzsch) Baill. In order to make Croton a monophyletic group, Berry et al. (2005b) incorporated into the taxon other small genera formally placed in the tribe Crotonae and excluded from it species of the section Astraea, which was reestablished by the authors as the genus Astraea Klotzsch.

IIIb. Research in Rio de Janeiro

In the state of Rio de Janeiro, research has been focused on Euphorbiaceae s.l. Studies started in the 1970s with the taxonomic revision of the genera Algeronia Baill. and Tetraplandra Baill. Following these studies, Emmerich (1981) proposed new species (A. glaziouii and A. paulae) and a new combination: A. gibbosa (Pax & K. Hoffm.) Emmerich. Oliveira (1985) studied Sebastiania corniculata (Vahl) Müll.Arg. (currently a synonym of Microstachys corniculata (Vahl) Griseb.).

In the 1980s, studies focused taxonomic problems at different infrageneric levels. The validity of infraspecific taxa, accepted at that time, was tested by several researchers. Senna-Valle (1983) showed that the infraspecific taxa of Anabaenella tannoides (Juss.) Pax & Hoffm. in Sebastiania Spreng., Oliveira & Penna (1985) studied the taxa S. brasiliensis var. erythroxyloides (Muell.Arg.) Muell. Arg. (currently Sebastiania brasiliensis Spreng.), and S. glandulosa var. fallax (Müll.Arg.) Pax (currently Microstachys corniculata (Vahl) Griseb.), approaching their taxonomy and leaf anatomy. Palynological studies were associated with taxonomic studies on Sebastiania Spreng. (Gonçalves-Esteves et al. 1986). Oliveira & Sá-Haiad (1988) pointed out structural similarities and differences between Euphorbia heterophylla L. and E. cyathophora Murray. Emmerich (1987) devoted herself to the taxonomic study of Mabea fistulifera Mart. Oliveira et al. (1989) studied the Euphorbiaceae that occur in the restingas of the state of Rio de Janeiro from a floristic and taxonomic perspective.

In addition to those, stand out revisions of Chaetocarpus Sw. (Alves 1982) and taxonomic/floristic studies, such as those on Alchornea Sw. that occur in Rio de Janeiro (Silva 1993), Dalechampia Plum. (Maia et al. 2002), Pera glabrata (Penna 1981), and Croton L. (Sá-Haiad 1987). The latter was pioneering in Brazil regarding the use of scanning microscopy for studying Euphorbiaceae species. It is important to emphasize the multidisciplinary approach of these studies, in which leaf anatomy and pollen grains were used as subsidies for a better taxonomic revision of the species.

In the 1990s, studies focused the taxonomy of genera and species found in different Brazilian ecosystems, studying the morphology of taxa such as Croton urticifolius Lam., Sebastiania bidentata (Mart. & Zucc.) Pax (currently Microstachys bidentata (Mart. & Zucc.) Esser, following Oliveira & Ferraz (1991)), Caryodendron grandifolium (Müll.Arg.) Pax (currently Caryodendron janeirense Muell. Arg., following Senna-Valle & Campos (1992)), and nomenclatural types in the family (Oliveira & Senna 1991). Silva (1993) studied varieties of Alchornea triplinervia (Spreng.) Müell.Arg., and only two out of the eight previously established varieties were accepted. In regional studies, Euphorbiaceae was recorded in florulas, such as the Flora of Mato Grosso, mainly through studies on species of Sebastiania Spreng. and Sapium P. Br (Oliveira 1991); the Flora of the Caiçara Reserve - Parati, Rio de Janeiro; the Flora of the Restinga of Jurubatiba National Park – Rio de Janeiro (Oliveira et al. 1997); and the Flora of the Atlantic Forest of southeastern Brazil. With a multidisciplinary

From the 2000s on, the number of monographs, dissertations, and theses that focused the family increased. Medeiros et al. (2002, 2007, 2009, 2011) devoted themselves to the taxonomic and morphological study of Croton species present in rocky fields of Minas Gerais. Initially, the study was restricted to the São José Mountain Range, Tiradentes, as part of the Flora of São José Mountain Range (Alves & Kolbek 2009). The species richness of Croton section Medea identified in this study led to the morphological and taxonomical study of the section, using specimens from southeastern Brazil. In these studies, the focus was the taxonomic validation of rare species, which were lacking in herbarized collections. Some of these species were rediscovered (such as Croton gnidiaceus Baill., C. josephinus Muell.Arg. and C. staechadis Baill.), as they have been no longer collected since the type material was described. As a result from this approach and due to the high endemism in rocky fields, three new species were described for the section. The section could be recognized through a matrix of relevant morphological characters for its circumscription. Pinto (2004) studied the biological diversity of Euphorbiaceae in Serra da Tiririca State Park, Niterói, state of Rio de Janeiro, and recorded 21 genera and 41 species. Sá-Haiad et al. (2009) carried out studies aiming at contributing to the knowledge of relationships among Croton, Brasiliocroton, and Astraea. Morphological, anatomical, and palynological analyses were used to describe and compare species. The main objective of this study was to search for structural elements to be used in analyses of the lineage of crotonoids. Vegetative characteristics – both morphological and anatomical – as well as the presence of reduced petals on pistillate flowers – are similar among the studied specimens of Croton section Cyclostigma and Brasiliocroton mamoninha, differing from Astraea. The presence and protodermal origin of the idioblasts with lipophilic content and the interruption of the palisade by collenchyma layers on the adaxial side of the mid vein are common to the Croton L. species analysed and Brasiliocroton. The type of inflorescence, as well as some morphological characters of its reproductive structures, distinguishes B. mamoninha from the other two genera. The average size of the pollen grains of the studied species of Astraea and B. mamoninha differs from that of representatives of Croton section Cyclostigma, which have large pollen grains. The presence of dorsiventrality, paracytic stomata, collateral vascular bundles, branched non-articulated laticifers and crystal idioblasts as well as spheroidal, unaperturate and with a croton-type ornamentation pattern pollen grains in the species studied indicates morphological similarities among the three genera. The interpretation of the stipe of the complex trichomes as emergences is a structural novelty for the group. The presence of innumerable characteristics associated with defense mechanisms, such as trichomes, idioblasts with crystal and/or with lipophilic content, laticifers and extralfloral nectaries, especially in the genus Croton, together with the possibility of both anemophilous and entomophilous pollination, may represent one of the explanations for its great success, which is manifested by a pantropical distribution and by the large number of species (Sá-Haiad et al. 2009). This group of researchers contributed with the study on Peraceae for the list of Brazil (Bigio et al. 2010). Currently, the group is devoted to the study of species of Euphorbiaceae s.l. present in the Flora of the State of Rio de Janeiro.

IV. Euphorbiaceae in the Southern Region

In the southern region, studies with a more general approach stand out: Smith & Downs (1959) made a preliminary assessment of the Euphorbiaceae of Santa Catarina; Rambo (1960) presented a list of 15 genera and 64 species of Euphorbiaceae in the state of Rio Grande do Sul, based on data of a private herbarium owned by the author; Klein (1977) provided morphological and ecological data of 27 Croton species in the state of Santa Catarina; Allem (1978) made a preliminary taxonomic assessment of ca. 40 Croton species in Rio Grande do Sul. Allem (1979) proposed four new species and a section (Calycireuplicateae Allem) of Croton for Rio Grande do Sul. According to this author, these species would be represented by dioecious plants, what would be something extraordinary, since the Croton species known so far are all monoecious, usually with pistillate flowers on the base and staminate flowers on the rest of the rachis. However, in his descriptions, Allem (1979) states that the staminate and pistillate flowers are in separate inflorescences, but on the
same individuals, hence, those species would be, in fact, monoecious.

Probably, the greatest contribution to the taxonomic study of the Euphorbiaceae of southern Brazil was made by Smith et al. (1988), in a taxonomic treatment entitled Flora Ilustrada Catarinense. These authors used the old subdivision of the family, approaching the subfamilies Phyllanthoideae (with two ovules in each locule of the ovary), in which stood out genera such as Phyllanthus and Richeria, among others, and Crotonoideae (with one ovule in each locule of the ovary), in which most genera were placed, such as Acalypha, Croton, Euphorbia, etc.

It was proven that studies on Euphorbiaceae s.l are growing, particularly in the northern, northeastern, and southeastern regions of Brazil, with still some gaps in the central and southern regions. Research in these two last regions will lead to a broader knowledge of this important family.

There are many studies on Brazilian species of Croton L. However, species of the states of Mato Grosso, Goiás, part of the Brazilian Amazon (Pará, Amazonas, Amapá, and Roraima), Rio Grande do Sul, and Paraná, especially herbs, need revision.

There is a need for taxonomic revision/update also for Phyllanthus, Dalechampia, Drypetes, Mabea, and Sapium Jacq.; the latter is still a great challenge. In addition, we point out the need for more comprehensive taxonomic studies on the Brazilian Hippomaneae, in particular due to the changes in this taxon in the past few years, what lead to the establishment of novelties such as Pseudosenefeldera Esser, Dendrothrix Esser, Rhodothyrsus Esser, and Pleradenophora Esser.

We noticed a lack of published studies in Brazil on molecular systematics of the Euphorbiaceae s.s., Phyllanthaceae, Picrodendraceae, and Putranjivaceae. We believe that graduate programs can provide the means to form new taxonomists and to choose modern methods for the taxonomic treatment of the genera that need additional studies, in order to define the species better. Special attention should be given to Peraceae, since this group is still being debated.

Acknowledgements

Inês Cordeiro, Margareth Sales, and Ricardo Secco thank the Brazilian Research Council (CNPq) for the productivity fellowships granted for the study of Euphorbiaceae in the southeastern, northeastern, and northern regions of Brazil. The PhD Alessandro Rosário formatted the text.

References

Gomes, A.P.S.; Sales, M. F. & Berry, P.E. 2010. *Croton limae* (Euphorbiaceae), a new species of section...
ecológicas e de anatomia foliar. Revista Brasileira de Biologia 35: 87-100.

Schultes, R.E. 1952. Studies in the genus Micrandra I: The relationships of the genus Cunuria to
Euphorbiaceae studies in Brazil

